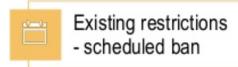


Making the transition from research trials to field application

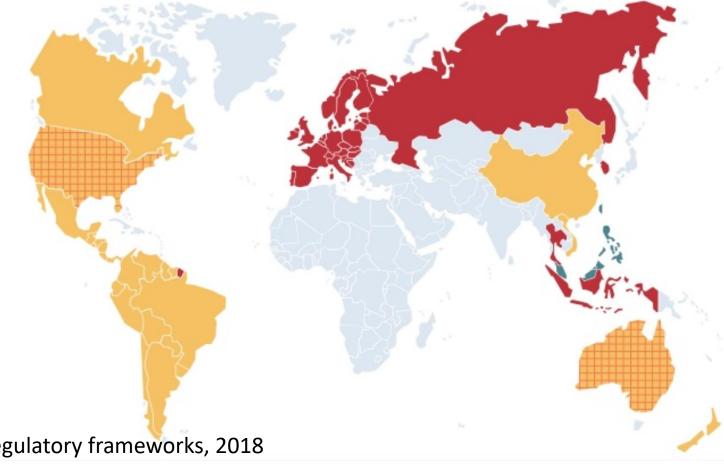
Doug Korver

doug.korver@ualberta.ca

University of Alberta, Edmonton, Canada

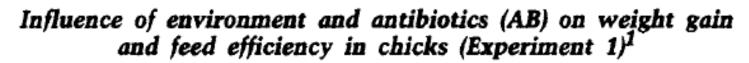


REGULATION OF ANTIBIOTIC GROWTH PROMOTERS (AGP) WILL ACCELERATE


AGP regulatory status in leading markets

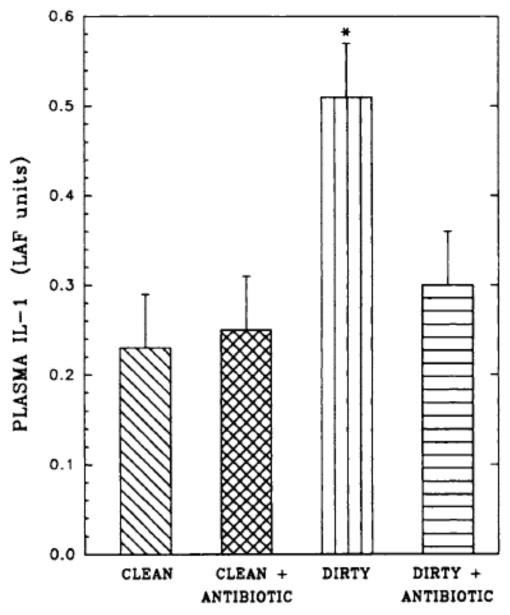
Existing restrictions + customer-driven self regulation

DuPont interpretation of regional/country regulatory frameworks, 2018



Alternatives to antibiotics

- Niche markets vs industry-wide adoption
 - Product differentiation (US, Canada, etc.)
 - May command a premium
 - Legislation (EU, exporters to EU, etc.)
 - AGP-free is the standard to be able to sell chicken
 - No premium
- In either case, the objective is to maintain
 - Production efficiency
 - Animal health
 - Food safety
 - Profitability



Treatment ²	Weight gain	Feed efficiency	
	g/(chick·d)	g gain/g feed	
Clean	12.65ª	0.66ª	
Unsanitary	12.10 ^b	0.66ª 0.54 ^b	
Clean + AB	12.72 ^a	0.67 ^a	
Unsanitary + AB	12.57ª	0.63ª	
Pooled SEM	0.14	0.02	

¹Means in a column with different superscript letters are significantly different (P < 0.05).

Roura et al., J. Nutr. 1992 122:2383-2390

²Sixty-four chicks were raised for 14 d (from 3 to 17 d of age) in each of the two different environments (clean or dirty) and fed diets either without antibiotic or with streptomycin (100 mg/kg) and penicillin (100 mg/kg).

Alternatives to antibiotics

- Antibiotics covered a wide range of problem organisms
 - Multiple predisposing factors
 - Incubation
 - Stress
 - Feed quality
 - Biosecurity
 - Environment
 - Greater response with increased infectious pressure

Alternatives to antibiotics

- Removal of AGP presents opportunities for a wide range of potential pathogens
- Reduce negative interactions between the host and gut microbes
 - Local and systemic effects
 - Disease
 - Reduced performance
- Protect humans from food-borne illness
 - Immunological tolerance by the bird

Alternatives to antibiotics – an effective "fence"?

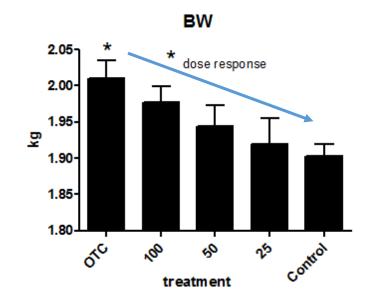
- AGP increased growth and efficiency by 3-5%
- Positive response 72% of the time
- Compared to what?
 - ...not using AGP
- Shouldn't we evaluate alternatives to AGP in the same context?

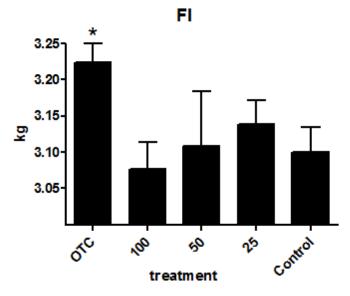
Dahiya et al., 2006

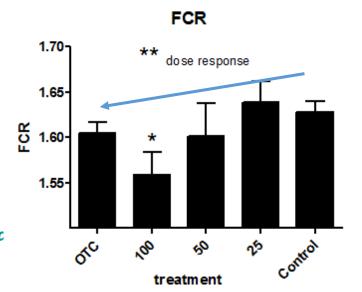
Rosen, 1995

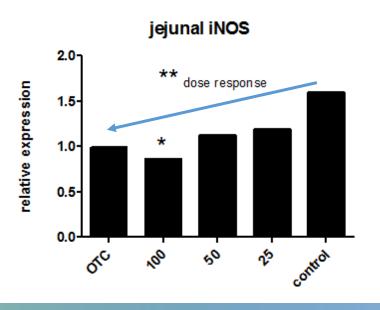
- Characteristics of a viable alternative
 - be efficacious
 - economically feasible
 - simple to apply consistently under field conditions
 - be accepted by consumers
 - not promote microbial resistance

Many products have evidence of some direct or indirect influence on


inflammation or antimicrobial activity


- Cell culture/in vitro antimicrobial activity
- Tissue gene expression
- Plasma/tissue mediators of inflammation
- Are there links to effects on performance?
 - Efficacy





- Sound experimental design
 - Positive control (with AGP) negative control, (no AGP)
 - Loss of performance in NC
 - NC plus experimental treatments
 - Full or partial recovery of performance

Growth promotion in broilers by both oxytetracycline and *Macleaya* cordata extract is based on their anti-inflammatory properties.

Khadem et al. 2014. Br. J. Nutr. 112, 1110–1118

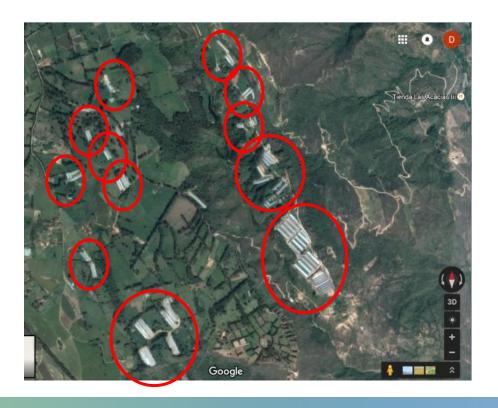
University – small scale, intensive, highly controlled research facilities

- Are research results applicable to the real world?
 - Do the experimental ideas work?
 - Are they feasible?

- Experimental challenge models
 - Do the experimental studies reflect what happens in the field?
 - Single vs multiple challenges
 - Which pathogens?
 - Clinical vs sub-clinical challenges
 - Natural vs artificial challenges
 - Effect of challenge model on response
 - Prophylactic vs therapeutic uses
 - What about the environment/location?

- Clear research question (hypothesis)
 - Change a limited number of factors

- Experimental design
 - Controls
 - Replication of treatments
 - Blocking
 - Sampling

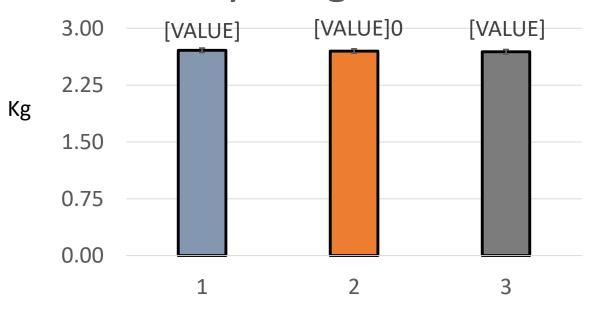

- Conducting the study
 - Appropriate measurements
 - Quality control
 - Response to errors
- Objective evaluation
 - Statistics
- Interpretation
 - Is the product effective in the face of a challenge?
 - Is the performance of the PC birds relevant to commercial production?

- Advantages
 - Large numbers of barns
 - Replication on a farm/over time/across a large number of facilities

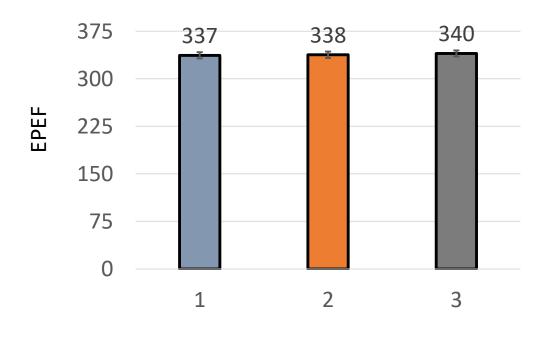
- Limitations
 - Lack of negative controls
 - Variation
 - Barn to barn
 - Farm to farm
 - Geographical location
 - Statistical differences vs trends

Dietary Treatments

	T1	T2	T3
Basal Diet**	AVISID	AVISID	AVISID
AGP	✓	X	X
Butyrate	✓	▽	X
MOS (Mannan-oligosaccharides)	✓	▽	X
Essential Oil + Benzoic Acid	✓	▽	▽
Enterococcus faecium	✓	▽	▽
Bacillus subtilis — Bacillus licheniformis	X	▽	▽
Protease + Xylanase + Amylase	✓	▽	✓
Phytase (1000 FYT/g)	✓	X	X
Phytase (2500 FYT/g)	X	▽	▽


** Pre-starter, starter, grower and finisher (mash form)

Sanabria et al., International Poultry Scientific Forum February 11, 2019, Atlanta, GA, USA


Alternatives to antibiotics – commercial trial

Body weight D44*

P = 0.8613

European Performance Efficiency Factor D44*

* Kg/m² and age at slaughter as a covariate

Sanabria et al., International Poultry Scientific Forum February 11, 2019, Atlanta, GA, USA

- Production realities
 - Disease outbreaks
 - Staff time/attention to detail
 - Production takes priority over research
 - Large number of steps/people involved
 - E.g. getting feed into the right bin/barn
 - Coloured feed bags/tags/bin labels
 - Responsibility for maintaining experimental protocol
 - What happens when a mistake is made?
 - What happens when someone changes things?

Evaluating an antibiotic alternative strategy – economics

- Cost of implementation
 - Removing a single product (AGP)
 - Replacing with a group of different products, each with its own cost
- Additional costs
 - Vaccinations
 - Reduced performance
 - Lower stocking density
 - Longer down times between flocks
 - Increased biosecurity/improved facilities
 - Feed supplements
 - Immune modulation
 - Feed quality
 - Nutrients, contaminants and mycotoxins

Evaluating an antibiotic alternative strategy – economics

Traditional supplements

 E.g. phytase vs inorganic phosphate

> What alternatives will achieve the same performance at the same or lower cost?

Antimicrobial alternatives

- Multiple products/approaches to replace a single product
 - Higher costs
 - Will I be able to sell my product or not?"
 - Legislation, export markets
 - Consumer preferences

Alternatives to antibiotics

- Likely need multiple products with multiple mechanisms
- Different pathogens require different strategies
 - Likely multiple pathogens of concern
- Specific challenges will change over time
- Complementary strategies
 - If one approach is not effective, others will be

Alternatives to antibiotics – take home message

- Replace the outcome, if not the exact mechanisms of antibiotics
 - Animal health
 - Animal performance
 - Animal welfare
 - Food safety
 - Profitability
- Use with strategies unrelated to antibiotics
 - Vaccination
 - Immunomodulators
 - Etc.

